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Abstract 

Sparse system solvers and general purpose codes for solving partial differential 
equations are examples of the many types of problems whose irregularity can result 
in poor performance on distributed memory machines. Often, the data structures 
used in these problems are very flexible. Crucial details concerning loop depen- 
dences are encoded in these structures rather than being explicitly represented in 
the program. Good methods for parallelizing and partitioning these types of prob- 
lems require one to assign computations in rather arbitrary ways. 

Naive implementations of programs on distributed memory machines requiring 
general loop partitions can be extremely inefficient. Instead, the scheduling mecha- 
nism needs to  capture the data reference patterns of the loops in order to partition 
the problem. Once this partition is obtained, a pre-processing step is required. 
First, the indices assigned to  each processor must be locally numbered. Next, it is 
necessary to  precompute what information is needed by each processor at  various 
points in the computation. The precomputed information is then used to generate 
an execution template designed to carry out the computation, communication and 
partitioning of data, in an optimized manner. 

In this paper, we present the design of a general preprocessor and schedule 
executer, the structures of which do not vary, even though the details of the com- 
putation and of the type of information are problem dependent. We draw the 
following conclusions from this work: it should be possible to  solve a whole variety 
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of sparse and adaptive problems using a single mechanism for the setup phase of the 
problem. These mechanisms can then be incorporated into automated compilers 
for distributed memory machines as well as explicit language extensions. We also 
present results that illustrate the performance benefits that accrue from effective 
preprocessing. 

1 Introduction 

1.1 Overview 

The focus of this paper is to explore methods of handling loop structures arising from 
problems such as sparse system solvers whose irregularity can result in poor performance 
on distributed memory machines. In these problems, crucial details concerning loop 
dependences are encoded in data structures rather than being explicitly represented in 
the program. 

A distributed memory machine is a multiprocessor in which each processor has highly 
preferential access to its own local memory. Accesses to storage in other processors is 
substantially slower. Typically, there is no hardware support for accessing individual 
storage locations in remote processors. Each processor directly reads or writes only 
to its own memory locations. Remote memory fetches must be carried out in a rather 
roundabout manner. Processor A obtains the contents of a given memory location which 
is not on A by sending a message to processor B associated with the memory location. 
Processor B must be programmed to anticipate such a request, to satisfy the request 
and to return a responding message containing the information requested. In most 
architectures the sending or receiving of a message is accompanied by a communication 
startup time that is substantially higher than either the time of a computation or the 
time required to send or receive an incremental word of data. 

Distributed memory machines have very substantial advantages in their abilities 
to deliver computational power at extremely high rates. When the work in scientific 
programs is partitioned in an appropriate manner, excellent performance can often 
be attained on machines or networks of multiprocessors with relatively rudimentary 
communication capabilities. 

Unfortunately, general purpose modern codes for solving partial differential equa- 
tions and sparse linear systems are examples of the many types of problems whose 
irregularity can result in poor performance on distributed memory machines. 

One can use a shared memory model to execute a nest of loops on a distributed 
memory machine [1],[3]. In all but very coarse grained problems, the results will be 
very unsatisfactory unless mechanisms are used: 1) to anticipate what data will be 
needed in which processor and 2) to cluster communications to reduce the number of 
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startups. This type of optimization is typically performed manually in problems with 
regular communication patterns that do not vary when the program is executed with 
different input parameters. 

Attention must frequently be paid to how one is to partition work in a nest of loops 
in order to achieve a good load balance along with reasonable communication costs. 
When it is necessary to partition an array among processors in an irregular fashion, the 
location of an array element in a local storage may not have a simple relationship with 
any global numbering of the array elements. If these transformations between global 
and local coordinates are resolved during the loop execution, a substantial performance 
penalty will generally be paid. 

The methods to be described here involve execution time preprocessing and in 
essence require a prior symbolic execution of a loop structure. The usefulness of these 
methods is clearly for inner loops of programs. Without them performance penalties 
would have to be paid during every loop iteration rather than being paid for once during 
an initial optimization. 

In this paper, we present an outline of the infrastructure required to perform the 
optimizations outlined above on a class of loops we term start-time schedulable. A 
nest of loops is start-time schedulable if all data dependences are resolved before the 
program begins execution and if these dependences do not change during the course of 
the computation. This includes codes in which dependences are completely specified at 
compile-time. We also present ideas on how the use of the infrastructure we describe 
might be automated. Experimental data is included that quantifies the performance 
obtainable using the methods to be discussed here. 

One long term aim of this research is to produce software that is able to interface 
with any program written on a distributed memory machine through what will appear 
to the user to be a subroutine call. The subroutines in question will be formed from 
standard templates we develop. These templates will be customized in a way that 
optimizes inner loop performance for loop structures specified by the user. The current 
research involves identification of techniques to achieve high performance for certain 
important classes of loops. Follow on research would include the development of tools 
that allow easy customization of the templates we provide. 

1.2 Background 

There are several research efforts under development which address the programmability 
of distributed machines. DINO[8] is a C language extension which has been designed for 
programming numerical algorithms on distributed machines. The constructs provided 
by DIN0 allow the programmer to specify mappings of data structures onto a virtual 
parallel machine. Accesses to local data are as usual but an access to a remote data ob- 
ject results in automatic insertion of a message. Thus, for very regular problems whose 
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patterns of data accesses are known at compile-time, D I N 0  relieves the programmer 
of specifying the send-receive pairs for the parallel program. Callahan and Kennedy[3] 
describe another approach to programming distributed memory machines. User an- 
notations to a high-level program declare whether a data-structure is logically shared 
between the virtual processors and a one-one mapping between elements of the structure 
and virtual processors is provided. Clustering of elements onto a single physical proces- 
sor is specified separately. The authors suggest a long list of possible optimizations that 
will be attempted; many of these are analogous to those carried out for shared-memory 
and vectorizing compilers. Koelbel et. al. describe BLAZE[5] which is a language ex- 
tension to Pascal. Here a user program may describe a distribution of shared arrays 
among the machine’s processors. The main loop construct discussed in this paper is the 
fora l l  loop, distributed using strip-mining. The Linda system[l] provides an associative 
addressing scheme by which a reference to variables can be resolved at run-time; this in 
essence provides a shared name space for distributed memory machines. 

In section 2 we describe in some detail the kinds of loop structures to which our 
methods apply and we provide an overview of the optimizations we investigate. In 
section 3 we outline the design of the methods we have explored. In section 4 we 
present experimental results on the Intel iPSC/2 that quantify the benefits that can be 
obtained through the use of our optimizations. We also present data that quantifies the 
costs that would be incurred were one to take a naive approach towards dealing with 
loops of the type we consider. Finally, in 5 we draw conclusions about the role of the 
methods we have been investigating. We also draw conclusions about some of the issues 
involved in mapping work from irregular or sparse problems onto distributed memory 
machines. 

2 Prescheduling Sparse Loop Structures 

In section 2.1, we present a set of programs that carry out a simple regular computa- 
tion. These examples demonstrate why even simple programs coded using loops that 
involve flexible data structures can cause performance problems on distributed memory 
machines. In section 2.2, we describe the added issues that arise when loops with 
somewhat more complex dependency structures are considered. In section 2.3 we give 
an overview of the way we carry out the optimizations presented here. 

2.1 Sparse Matrix Vector Multiply 

To provide a context for what follows, we will present two programs that carry out 
a sequence of sparse matrix vector multiplies (Jacobi iterations) and what might be 
done to execute these programs on a distributed memory machine. In Section 4 we 
will present experimental results illustrating the differences in performance that arise 
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do iter=l,num 
do i=l,n 

do j=l,n 
x(i,j) = a(i,j)*xold(i+l,j) + b(i,j)*xold(i-l,j) + 

end do 
c(i, j)*xold(i, j-1) + d(i, j)*xold(i,j+l) 

end do 

do i=l,n 
do j=l,n 

end do 
xold(i,j) = x(i,j> 

end do 
end do 

Figure 1: Jacobi Iteration 

from the optimizations discussed here. The first version of the program is depicted in 
Figure 1. Such a problem should be partitioned in a manner that 1) distributes load 
between the processors roughly equally 2) limits the number of communication startups 
and 3) limits the size of the messages that need to be communicated between processors. 
Depending on the time required for communication startups, the typical strategy is to 
partition all arrays by strips or rectangular blocks [7 ] .  Values of variables along each 
side of the periphery of the strips or blocks can be exchanged. 

The program in Figure 1 performs a sequence of Jacobi sweeps or point relaxations 
over an n by n square. In this program, the variable values at domain point z , j  are 
represented by x(i, j) and xold(i, j). The values of a(i, j ) ,  b ( i ,  j ) ,  c(i, j )  and 
d (i , j ) are used each iteration for the calculation of x (i , j ) . Because of the regular ge- 
ometry of this program, the programmer can easily identify variables whose values must 
be sent to other processors, and values which must be received from other processors. 
When this program executes, a single message can be formed from all variable values 
corresponding to the side of a rectangle. If we partition the program in Figure 1 between 
P processors using a vertical strip decomposition, Figure 2 gives the pseudocode for the 
corresponding message passing program. We use a FORTRAN 8x type notation in our 
pseudocode for depicting sending or receiving subarrays of floating point numbers. 

In a distributed memory machine, array references must refer to memory locations 
on a particular processor. In Figure 2, we see that it can be straightforward to translate 
loops so that all references are to a processors local memory. 

Consider Figure 3 which depicts a program that is somewhat more general than the 
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.o iter= 1, num 

do i=l,n/P 
do j=1 ,n 
x(i,j) = a(i,j)*oldx(i+l,j) + b(i,j)*oldx(i-1,j) + 

end do 
c(i,j)*xold(i,j-l) + d(i,j)*xold(i,j+l) 

end do 

do i=l,n 
do j=l ,n 
xold(i,j) = x(i,j) 
end do 

end do 

send xold(1;) to proc p-1 
send xold(n/P;) to proc p+l 
receive from proc p-1, put in xold 
receive from proc p+l, put in xold(n/P+l;) 

!nd do 

Figure 2: Message Passing Jacobi 
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S1 do iter=l,num 

s2 do i=i,n**2 

s3 x(i) = x(i) + a(j)*xold(column(j)) 
do j =low (i) ,high( i) 

end do 
end do 

s4 do i=l,n**2 

end do 
xold(i) = x(i) 

end do 

Figure 3: Sparse Mesh Jacobi 

program in Figure 1 but for the appropriate array initializations represents the same 
problem as the program in Figure 1. In the following figures we use a modification of 
a standard sparse matrix data structure where the non zeros in matrix A are stored in 
a one dimensional array a. Non zero elements are taken from consecutive rows of A 
and are assigned to a beginning with the leftmost column of each row of A. For each 
row i, low(i) and high(i) represent the locations in array a of the left and rightmost 
non-zero columns of the row in matrix A. The column of A corresponding to element j of 
a is given by column( j ) .  Rather than sweeping over a two dimensional array, we sweep 
over a one dimensional array where dependences are given by the integer array column. 
A problem with the same pattern of dependences as seen in Figure 1 could be specified 
by the program in Figure 3. This form of the code is important because sparse matrix 
solvers use this type of formulation. 

In Figure 3 we use the arrays a and column to designate which array elements will 
be needed to compute the right hand side in statement S3. Unless we know how arrays 
low and high have been initialized, we do not know which elements of column and a 
will be needed on each processor. In a naive implementation of the algorithm, we would 
have to partition column and a in some regular manner and would have to fetch the 
array values when they are needed, possibly generating high performance penalties. A 
naive multiprocessor implementation of the code in Figure 3 also requires that a fetch 
from a remote memory be performed whenever zold( column(j))  in program statement 
S3 specifies a memory location not assigned to the processor on which the code executes. 
The experimental results in Section 4 quantify how costly this kind of implementation 
can be on a message passing machine. 

We can systematically partition a problem to obtain a good balance between com- 
munication costs and load balance. In Figure 4, we show an example of a partitioned 
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o iter=l,num I. 
Sl 
s2 
s3 

s4 

s5 

doall pe=l,num-processors 
do i=l ,nlocal (pe) 

next = schedule (i , pe) 
do j=low(next) ,high(next) 

end do 
x(next) = x(next) + a(j)*xold(column(j)) 

end do 
end doall 

do i=l ,nlocal (pe) 
next = schedule (i) 
xold(next) = x(next) 

end do 
end doall 

Figure 4: Transformed Sparse Mesh Jacobi 

version of the program shown in Figure 3. Each iteration of the doall loop S 1  is as- 
signed to a unique processor p e .  Each processor pe loops over the indices assigned to it 
(statement S2), the indices assigned to pe are specified in statement S3 by the subarray 
scheduZe(;pe). In this illustration, global names are still given to all array references and 
loop indices. 

If we wished to store the required elements of arrays a and column in the processors 
where these elements are used, some sort of scheme would be required to associate the 
global index numbers with locations in local storage. To fetch values of xold in the right 
hand side of statement S4, we would have to (1) determine the processor p responsible 
for producing a variable value (2) determine the local identity of the variable on p and 
(3) instruct processor p to send the variable value. 

Optimizations that can be performed on this partitioned program are: (1) data to be 
transmitted between processors can be formed into longer packets to amortize startup 
costs, (2) communications to be carried out by each processor can be prescheduled so 
that each processor knows when to send and when to receive values of specific variable, 
and (3) the global index numbers used to access elements of x, old, a and column 
can be translated into local index numbers that represent storage locations in each 
processor. 
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do iter=l,n 
doall i=l,m 

.. = x(*,iter-*) 

I -  
x(i,iter) = . . 
end doall 

end do 

Figure 5: Sequence of Doall Loops 

2.2 Prescheduling Loop Structures 

We can perform optimizations of the type described in Section 2.1 in more general cases 
where we have a sequence of doall loops between which there are dependency relations. 
For instance in Figure 5 we have a sequential outer loop S1 whose loop body contains 
a doall loop S2. S2 contains an expression with variables that may have been written 
to during earlier iterations of SI. 

Sets of recursion equations are a particularly important example of a type of problem 
that are programmed as a sequence of doall loops. These equations are frequently 
specified in a sparse format. Consider for example the program for solving a lower 
triangular system in Figure 6. In that program, we must assume that the outer loop 
S1 has to be executed in a sequential fashion. Sets of iterations of S 1  (Figure 6) that 
can be concurrently executed can be identified by performing a topological sort on the 
dependency graph relating the left hand side of S 1  to the right hand side. This sort is 
performed by examining the integer array column. In this way the sequential construct 
in Figure 6 can be transformed into a parallel construct consisting of a sequence of doall 
loops. Each doall loop represents a concurrently executable set of indices from S1 of 
figure 6. 

It is frequently possible to cluster work carried out in solving recursion equations 
so that adequate parallelism is preserved but so that a reduction is obtained in the 
number of computational phases and hence the number of communication startups. 
For example, consider what is required for efficiently solving a set of explicitly defined 
recursion equations 

on an X by Y point square (the recursion equations are subject to some suitable bound- 

(1) y ;  j . = a. t , jYi, j- l  . + b i , j ~ i - l , j  
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do i=l,n**2 
do j=low(i) ,high(i) 

end do 
x(i> = x(i> + a(j>*x(column(j>> 

end do 

Figure 6: Sparse Mesh Lower Triangular Solve 

ary conditions). We can concurrently solve for variables along antidiagonals, i.e. vari- 
ables y;,j satisfying i + j = L for positive k. The computation will be divided into 
X + Y - 1 phases. Assume we instead partition the domain into a grid with X / m  point 
horizontal strips and X / n  point vertical strips. The work in each of the resulting X / m  
by X / n  point rectangles is scheduled as a single unit. This modified computation will 
require only X / m  + X / n  - 1 phases. 

Work involved in solving recursion equations specified in a sparse format must be 
scheduled so that parallelism can be exploited. In order to take advantage of efficiencies 
that can be gained by clustering blocks of variables, operations assigned to a given 
processor executed during a particular phase must be scheduled in a specific order. 

Figure 7 demonstrates how the computations for 1 are carried out. Note that a 
single triangular solve requires the solution of a sequence of doall loops ( statements S 1  
and S2); within each doall loop a set of row substitutions are scheduled (statement S3). 
As mentioned above, carrying out the operations in the order given by the array schedule 
in statement S3 may be essential. Methods for clustering work in sparse programs that 
solve recursion equations are discussed in detail in [9]. 

2.3 Overview of Optimizations 

First we must specify how the data structures appearing on the left hand side of expres- 
sions will be partitioned. For problems having sparse representations, partitions can be 
calculated using the integer data structures that represent dependency graphs (such as 
the array column in the examples shown here) Alternately partitioning information of 
variables appearing on the left hand side of expressions can be specified on an a-priori 
basis by a user with a good understanding of the computational behavior exhibited by 
an application. In our experiments described in Section 4 and in [6] we have used both 
methods. A system is being designed that symbolically transforms annotated programs 
to produce code that directly encodes dependency graphs. These graphs are encoded 
as integer arrays that can be directly interpreted by a preprocessor. Descriptions of 
problem partitioning methods can be found in [Z], [4], [7 ] .  
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S1 do phase=l,num,phases 

s2 
s3 
s4 

s5 

b 

doall pe=l,num-processors 
do j= 1, npoints(phase,pe) 

next = schedule(phase,pe,j) 
do k=low(next) ,high(next) 

end do 
x(next) = x(next) + a(k)*x(column(k)) 

end do 
end doall 

I end do 

Figure 7: Transformed Lower Triangular Solve 

When a partition is calculated or input, a preprocessing step is performed. The 
preprocessor precomputes the information needed to be sent to each processor at each 
point in the computation and locally numbers the indices assigned to each processor. 
This precomputed information is then used in a schedule execution template designed to 
carry out (in an optimized manner) the computation, communications on the partitioned 
data. In the examples displayed in this paper, the scheduled and partitioned indices 
are represented in array schedule, (Figures 4 and 7). The structure of the schedule 
executer and preprocessor do not vary, even though the details of the computation and 
the type of information are problem dependent. 

The reason we assume iterative codes is because there is a cost associated with this 
preprocessing stage. For fine-grained computations, this cost will need to be amortized 
over several iterations. The start-time requirement is related; were the elements needed 
by an index of computation to change between iterations, the information computed by 
the preprocessor will be invalid after that iteration. 

3 System Design 

3.1 Overview 

A preprocessor was written to precompute the communication patterns needed in the 
problems we solve. In addition, the preprocessor generates a request list for each pro- 
cessor detailing what data it will need to complete its computation and where this data 
can be found. The preprocessor also reorders the input data so it can easily be dis- 
tributed to the processors. In the ezecuter, each processor simply uses its request list 
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and communication data to determine what communication and computation is needed 
during a computational phase. The entire computation is solved over a fixed number of 
steps. Each step or phase corresponds to one of the doall loops presented in Figure 5. 

Consider what is involved in an implementation of an executer  that doesn’t utilize 
preprocessing to preschedule the transmission of needed data. Every time a processor 
p discovers that it doesn’t have some data it needs it must go through the following 
steps: (1) determine what processor p’ has that particular data; (2) send a “request to 
receive” message to p’; and (3) receive the requested data from p‘. The executer could 
be slightly smarter and have p package all requests for p’ during a computational phase 
into a single message. In addition to having much higher computational overhead, this 
implementation still necessitates twice as much computation as does the version of exe- 
cuter using preprocessed data. In a message passing machine, where the communication 
costs are extremely high, such an implementation is very inefficient (unless little or no 
inter-processor communication is needed). 

Due to the static nature of the dependency relations between different input data 
elements in the problems we study (i.e. problems are s t a r t - t i m e  schedulable) these 
expensive “house-keeping” computations can be performed prior to the actual compu- 
tation. 

3.2 A Simple Schedule Executer 

The executer performs computations in a streamlined manner. In this discussion, we 
will use as our running example the program in Figure 7. Elements of arrays that never 
appear on the left hand side of expressions are mapped to locations in local storage. 
Array a is an example of a data structure that would be treated in this manner. Data 
structure elements that appear on left hand sides of expressions can be organized in the 
order in which they are first written. An integer array is used to specify the dependency  
l ist  ; this specifies the location in local storage of array elements of J: that will be 
used on the right hand side of the expression. A distinction is made between elements 
of J: stored on the local processor and elements that have to be obtained from other 
processors. Elements of x that must be obtained from other processors are stored 
in temporary buffers that are filled when data is obtained from other processors. In 
Figure 8, we treat the arrays datalist, dependents, local as stacks, the function 
pop returns the next element on the stack. 

In Figure 8, we present a schematic version of an executer that corresponds to 
Figure 7. The example conveys how we construct an executer; the actual executer is 
programmed so that fewer array increments and references are required. Integer array 
numelements in statement S1 gives the number of indices assigned to each computational 
phase. In this version of the executer, we take advantage of the fact that elements of 
array x are written to in a consecutive manner. Array numdependents in statement S2 
gives the number of dependents corresponding to the current local index. In the context 
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of the lower triangular solve this is the number of non zeros appearing in a given row. 
The element of x required may either have been computed by the current processor and 
resides in its local solution vector or it has been computed by another processor and 
was transmitted to the current processor at the end of the last phase. Logical array 
l o c a l  contains this information. If the index has been computed on the local processor, 
the local index number is stored in integer array dependents (statement S3). If the 
index has to be received from another processor, dependents reflects the location of the 
array element in temporary storage (statement S4). d a t a l i s t  stores the indices of the 
elements of a. Elements of a are never found on the left hand side of any expression 
in the executer so that it is possible to initially assign elements of a required in each 
processor to locations in local memory. 

Several factors/goals influenced the design of this module but the most important 
were that (1) irregular problems be solved efficiently, and (2) executer be flexible so 
that its functionality could easily be expanded. 

The first of these goals was acheived by using a preprocessor to precompute com- 
munication patterns, to perform local to global index transformations and to organize 
local processor data. We accomplished the second goal by minimizing the amount of 
function-specific code and presenting the input data in a form that is independent of 
the function being computed. The computation required to execute the triangular solve 
is found in statement S5. We present in brackets the statements required to modify 
this executer so that it will compute a sequence of sparse matrix vector multiplies. In 
this case, the number of elements in a phase in S1 does not vary with the phase. The 
same memory locations are accessed during each computational phase so the l o c a l ,  
dat a l i s t  and dependents stacks are reinitialized each computational phase. 

The CommunicateData() routine constructs packets of data and sends packets to 
and receives packets from other processors. The preprocessor generated communication 
data is used to determine how to construct these data packets and where packets are 
sent and received. 

3.3 A Preprocessor 

The preprocessor requires an input schedule. The schedule designates the indices that 
are to be executed by each processor during every phase of computation. Three main 
tasks are performed by the preprocessor: 

1. Determination of the communication pattern needed by each node; 

2. Global to local address translation of the input data; 

3. Reorganization of the data to allow efficient execution and generalization of the 
executer. 
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call initialize( ...) 
do phase=O,NumPhases 

[MVM:i-lhs = 1; initialize(datalist,local,dependents) 1 

s1 do i=l ,numelements(phase) 
i-lhs = i-lhs+l 

s2 do j=O,numdependents(phase,i) 

C evaluate request element, it may be local o r  
C may have been computed by another processor 
C 
C 

s3 reqvalue = x(pop(dependents)) 

s4 

and sent here by CommunicateData() 

if (pop (local) . eq . LOCAL) then 

else 

endif 
reqvalue = recvPacket (pop (dependents) ) (pop (dependent 

I 

end do 
s5 x(i-lhs) = x(i,lhs) - reqvalue*a(pop(datalist)) 

[MVM : xnew ( i -1hs ) = x ( i -1hs) + reqvalue*a (pop (dat a1 i st ) ) I 

end do 
[MVM: do i=l ,numelements(phase) 

x(i) = xnew(i) 
end do 

end do 
CommunicateData() ; 

Figure 8: A Schedule Executer 
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These three tasks are now discussed briefly, further details and an outline of a parallel 
version of the preprocessor are presented in the Appendix. 

A sequence of send and receive communication calls are precomputed. The send 
and receive communication calls must be paired; everytime a processor p l  sends data 
to another processor pi!, pi! must know to receive data from p l  and processor p 2  must 
also be aware of the format p l  has imposed on the data it is sending. 

To amortize message passing startup costs in distributed memory machines, we use 
the schedule and the DAG to find out what information a processor p must receive 
from each of the machine’s other processors during each computational phase. The 
list describing the information p must send each phaseeach phase to each of the other 
processors can be found directly from the list describing the information that must be 
received. This list can also be found by using the transpose of the computational DAG. 

Programs in a distributed memory machine must always refer to locations in local 
memory. The programmer should be able to write loops referring to indices in a single 
shared index set. Global to local mapping is done by having the preprocessor determine 
the local address for each index element i. The local address of an element can be 
determined by examining the schedule since the schedule defines the order of execution. 
Once local addresses for all indices i are found, this information is used to: (1) rename 
the indices the list of index i’s dependents (e.g. array dependents in Figure S ) ,  and 
(2) translate the schedule designating what is to be sent and received at any given 
computational phase to refer to locations in local memory. 

3.4 A more general example 

The preprocessor and schedule executer can be customized to execute an arbitrary 
number of functions where each of these functions may be executed different number 
of times over subsets of the index space. Recall that thus far we have only considered 
code blocks with a single computation; Figure 9 depicts a slightly more general code. 
Functions F A  and F-2 are executed over different parts of the index set. Further, there 
is a conditional in the inner loop of the code. 

Because the code is assumed to be start-time schedulable, the dependences associated 
with each left hand side index can be determined once array1 and ar ray2  have been 
initialized. Similarly, the conditional need not be evaluated for every iteration of the 
above code; an execution schedule can be created by the preprocessor so that the inner 
loop function F-2 is computed for only those values of indices that satisfy the conditional. 
The schedule executor contains a list of indices which are used to evaluate functions F-1 
and F-2 as many times as given by the values of the loop bounds and conditional values 
which may be computed at start-time. 

In Figure 10, we depict a template for a schedule used by the executer. This template 

I 

f 

i 

15 



1 
1 

do i=l,N 
do j=low(i) ,high(i) 

Si: a(j) = F-l(arrayl(j)) 
do k=l ,n 

if (arrayl(j> < array2(k)) 

end if 
s2 : a(k) = a(j)*F_2(array(2)) 

end do 
end do 

end do 

Figure 9: A more general computation 

struct st-logical-sched 
c 
int num-phases; 
int *functions ; 
int *function-runs-this-phase; 
int *indices ; 

3 

Figure 10: Representation of Schedules 
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specifies the number of phases for a given code block, the list of functions, the number 
of times each function is computed and the list of indices in order of their function 
applications. The schedule executer is customized based upon the number of such 
functions within a given block of code. Thus, when there are two functions to be 
evaluated in a code block, the executer contains the code for these functions. The lists 
of left and right hand side indices are initialized and used as shown in Figure 8. 

The preprocessor and the executer have been extended to solve the numerical phase 
of sparse incomplete LU factorization. In this problem, we compute elements of the 
factored matrix only at certain prespecified matrix locations. In the versions we have 
implemented, the preprocessor precomputes the precise pattern of computation. Con- 
ditionals that determine whether a matrix element is to be computed (based on the 
known location of non-zeros) are only seen by the preprocessor. 

The schedule executer is customized based upon the number of such functions within 
a given block of code, as in Figure 9. Thus, when there are two functions to be evaluated 
in a code block, the executer contains the code for these functions. The lists of left and 
right hand side indices are initialized and used as shown in Figure 9, with the code 
within the executer being driven by the contents of the structure shown in Figure 10. 

The software we plan will ultimately be able to interface with any program written on 
a distributed memory machine through what will appear to the user to be a subroutine 
call. The subroutines in question will be formed from standard templates we develop. 
These templates will be customized in a way that optimizes inner loop performance for 
loop structures specified by the user. User annotations could be used to specify the 
parts of a code that comprise the actual functions or computations. Thus, statements 
S1 and S2 may be encapsulated within an annotation such as begin-node endnode.  
For a more detailed description of this idea, the reader is referred to [6]. 

t 

4 Analysis of Executor Performance 

4.1 Overview of Executor Performance 

In order to obtain an initial estimate of the efficiency of the executor on the Intel 
iPSC/2, we carried out a sequence of sparse matrix vector multiplications using matrices 
generated from a square mesh and a five point template. We expect this problem 
to parallelize well; the experiments are carried out not to demonstrate this obvious 
fact but to quantify the overhead caused by the extra non-floating point operations 
performed by the executor. In particular, we need to distinguish between inefficiencies 
due to the executor itself versus architecture and mapping related overheads such as 
communication delays and load imbalance. We performed a number of inter-related 
experiments to extract these factors. 
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Table 1: Matrix Vector Multiply 100 by 100 Mesh, 5pt. template 

Processors 

16 
32 

total 
time 

409 
207 
107 
55 
31 
18 

(4 

computation 
time 

409 
205 
103 
52 
26 
14 

(ms> 

executor 
overhead 

37 
19 
10 
6 
3 
2 

(ms> 

Single processor timings from an optimized sequential program were compared with 
the parallel code run on a single processor. The optimized sequential code required 
Tsequential = 0.372 seconds while the parallel code on a single processor required 0.409 
seconds. The overhead for using the executor in this case is approximately 9 percent. 

We partitioned the loop indices evenly into blocks, assigning consecutive blocks of 
indices to physically adjacent processors of an iPSC/2. 1 we depict the 
total time required to solve the problem on varying numbers of processors. A separate 
estimate of computation time Tcomp was obtained by eliminating the communication 
calls. Because indices are partitioned evenly between processors in this very uniform 
problem, we expect the load to be almost perfectly balanced. We form an estimate of 
the overhead d u e  t o  extra operat ions per formed by t he  executor  

In Table 

and depict this in Table 1. In may be seen that this overhead is roughly 10 percent 
of the parallel execution time. 

To demonstrate that the executor is capable of achieving high efficiencies in an 
absolute sense, we reduce the relative contribution of communication costs by increasing 
the size of the problem. We compared timings from matrix vector multiplications using 
matrices generated from square meshes of sizes 100, 150 and 200 using a five point 
template. The parallel efficiencies for 32 processors were 0.65 , 0.75 and 0.81 for problems 
arising from 100, 150 and 200 point meshes respectively. As usual, we define parallel 
efficiency as the ratio between the execution time for the optimized sequential program 
divided by the product of the number of processors and the execution time of the 
multiprocessor code. 
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Processors Linda executor 
time time 

time given 
100 percent 

16 12.679 0.031 I/ 32 1 11.724 1 0.018 1 0.012 

8 

4.2 Comparison of Executor Performance with that of a Shared 
Memory Simulator 

(seconds) (seconds) efficiency (seconds) 
17.936 0.055 0.047 

The Linda system[l] provides an associative addressing scheme by which a reference to 
variables can be resolved at run-time, this in essence provides a shared name space for 
distributed memory machines. We used the Linda system to estimate what efficiencies 
one might expect if one were to fetch various required array values on a demand basis 
with no preprocessing. We performed the same matrix vector multiplication experiments 
described in section 4.1 using a matrix generated from a 100 by 100 mesh. 

Referring to Figure 3, each element of array xold was fetched from the storage loca- 
tion assigned to it by the Linda system when a need for that element was encountered. 
All elements of a and column corresponding to a given row were stored contiguously 
and fetched as a single unit. Table 2 depicts the timings obtained using the Linda 
code along with a repetition of the timings obtained using the executor. The striking 
difference in timings can be understood when one considers that using the iPSC/2 as a 
shared memory machine requires having to pay several milliseconds per data fetch. It 
is important to emphasize that optimizations similar to the ones discussed here could 
be fruitfully employed in conjunction with the Linda system so that Linda’s apparent 
shared memory would be used much more sparingly. 

4.3 Distributed Memory Model Problem Analysis 

In section 4.4, we will experimentally examine the performance of the executor in the 
more challenging problem of solving sparse triangular systems. To properly interpret 
the results we obtain, we need to first examine load balance communication cost trade- 
offs in the context of solving the recursion equations in Section 2.2, equation 1. This 
dependency pattern is seen in a lower triangular system generated by the zero fill fac- 
torization of the matrix arising from a X by Y point rectangular mesh with a five point 
template (this system might arise in preconditioned Krylov space iterative linear system 
solvers). We will utilize P processors and partition the domain into n horizontal strips 
where each strip is divided into m blocks. 
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With very general assumptions, we show below that it is optimal to make the vertical 
strip size Y / n  as large as possible and to decrease the horizontal block size X / m  until 
the increased communication time becomes larger than the benefit of decreased idle 
time. We assume for convenience that m and n are multiples of P ,  and let S be the 
time required to perform the sequential computation. We define Tc to be the time 
taken to perform the computation in a block for a given m, n and S ,  and assume that 
Tc = S/mn. 

Estimated total time without communications can be expressed as the sum of the 
time that would be required were the computation evenly distributed between processors 
in the absence of any load imbalance plus the time wasted due to load imbalances: 

Tcmn Tcmin(m, n) (P - 1) 
P + P 

where Tc = calculation time per block. 

We now derive and discuss the second part of the above expression representing the 
time wasted due to load imbalances. The number of phases is equal to m + n - 1. 
Assuming that m and n are multiples of P ,  the term for idle time can be derived by 
noting that during any phase j 5 min(m,n) - 1 when j is not a multiple of P ,  there 
are P - j mod P processors idle When j is a multiple of P ,  no processors are idle. Thus 
the sum of the processor idle time for j 5 min(m,n) - 1 is: 

Tcmin(m, n)  CE,(Z - 1) - Tcmin(m, n ) (P  - 1) 
P * P  2P 

- 

Through similar reasoning, the sum of the processor idle time for the last min(m, n)- 
During the intermediate phases, the load is balanced with 1 phases is the same. 

min(m, n)  blocks assigned to each processor. Thus the total idle time is: 

Tcmin(m, n) (P - 1) 
P 

If there are no communication costs, TC = A, where S = sequential time. Then the 
total estimated time equals 

s , S ( P - 1 )  - +  ~ P max(m,n)P 
Thus in the absence of communication costs, all terms involve m and n in a symmetric 
manner. 

First we show that in the presence of communication costs, we should choose rn 2 n. 
We calculate the size of the largest message that must be sent between two processors 
during each phase. We assume that the time required for communication is equal to the 
sum of the times required each phase to send the largest messages. This tacitly assumes 
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that the system is essentially synchronous, that computation and communication occur 
in alternating non overlapping periods of time. 

The time required for communication can be safely assumed to be an increasing 
function of message size. For phases 1 through min(m,n) - 1, the maximum number 
of data values sent by any processor is [p/P1 * Bs, where p = phase number, Bs = 
X/m,  and X = horizontal dimension of the matrix. For phases min(m,n) through 
m + n - min(m,n), the maximum number of data values sent by any processor is 
rmin(rn,n)/Pl * Bs, and for phases m + n - min(m,n) + 1 through m + n - 1 a 
maximum of [(m + n - p)/P1 * Bs data values. If Bs were held fixed, the time required 
for communication would be symmetric in m and n. Since Bs is a decreasing function 
of m, it is always advantageous from the standpoint of communica.tion cost to choose 
m 2 n. Since equation 2 is also symmetric in m and n, the minimum total time always 
occurs when m 2 n. 

To minimize all terms involving n, we should chose n to be as small as possible, i.e. 
P. For m 2 n, equation 2 has no dependence on n. For any given m, the communication 
cost does not increase with decreasing n. If dependency graph GI has m by n1 points 
and dependency graph Go has m by no points, with n1 5 no, GI can be embedded in 
Go. Since the communication cost per block (Bs  = X / m )  is dependent only on m, GI  
need have a communication requirement no greater than Go. We thus conclude that 
the vertical blocks chosen should be as large as possible. 

4.4 Executer Performance 

We will show that we can account for the execution time in solving sparse triangular 
systems by estimating the time lost due to both load imbalance and communication 
delays. As mentioned earlier the input schedule dictates: (1) how the problem is parti- 
tioned; and (2) the computational granularity. Computational granularity is a crucial 
determinant of performance in message passing multiprocessors which possess relatively 
high communication latencies. It is important to aggregate or clump work in a way that 
leads to a controlled trade off between load imbalance and communication requirements. 
Optimal partitioning (i.e. mapping of the unaggregated problem) cannot be acheived 
without taking into account the geometrical relationship between index elements. Ag- 
gregation methods used to generate input schedules arising from sparse forms of a wide 
variety of recursion equations are described in [9]. An aggregation strategy that can be 
used for the sparse versions of the recursion equations was discussed in Section 4.3. The 
granularity of parallelism is parameterized using the parameters m and n introduced in 
Section 4.3. Recall that as m and n increase, the size of the scheduled computational 
grains decreases. 

In Table 3 we depict the sequential time, parallel time, time required by the parallel 
program run on one processor, estimated communication time, and estimated commu- 
nication free time. on 32 nodes of an Intel iPSC/2. The communication time estimate 
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is obtained by running problems in which computation is deleted but communication 
patterns are maintained. The estimated communication free time indicates the compu- 
tation time that would be expected in the absence of communication delays, this is given 
by equation 2; for this purpose we used the processor parallel time as the sequential 
time. The problems solved were on a 192 by 192 point domain and on a 576 by 576 
point domain. It was not possible to obtain sequential times or one processor parallel 
times for the larger problem; the times shown were extrapolated from the 192 by 192 
point problem. 

We note that for the problems on a 192 point square, the estimated communication 
free time added to the estimated communication time add up to a quantity that is close 
to the total time measured. Because these three quantities are derived from distinct 
experiments, this gives us some confidence that we are able to explain the timings 
observed. There is more of a discrepancy for the problem on a 576 point square. Since 
the one processor parallel time used is just an estimate, we expect that our estimate of 
communication free time here will be less accurate. 

We note that when we employ a very fine grained parallelism (m and n equal to 
problem size) we pay a very heavy communication penalty relative to the computa- 
tion time. The completion of this non-computationally intensive problem requires 383 
phases, each one of which requires processors to both send and receive data. We can 
reduce the number of computational phases, and consequently the communication time, 
at the cost of increased load imbalances. 

The overhead required for the operation of the executer appears to be captured well 
by the differences between the sequential time and the time required for the parallel code 
to execute on a single processor. Note that the overhead attributable to the executer, 
roughly 33 percent, is substantially larger here than it was for matrix vector multiply. 
This is understandable because the executor is having to coordinate a long sequence of 

I distinct, rather fine grained computational phases. 

While appropriate choice of computational granularity is essential for maximizing 
computational efficiency, the nature of the triangular solve limits the performance that 
can be obtained in problems that are not extremely large. The parallel efficiency ob- 
tained in the 576 by 576 point mesh was 34 percent. This is roughly half of the speed 
available once the overhead of the executor itself is accounted for. 

It should be noted that the same types of experiments were performed on the iPSC/l 
[6]. On the iPSC/l, floating point operations are much more expensive than they 
are on our iPSC/2. Estimates performed on the iPSC/l indicated that the overhead 
introduced by the executer was substantially smaller, and the parallel efficiencies were 
correspondingly larger. 

In Table 4 we present results from a somewhat less regular problem solved on a 32 
node Intel iPSC/1 hypercube. Given appropriate clustering techniques, an extremely 
high degree of regularity is not essential for achieving the efficiencies possible in these 
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Table 3: Matrix from square meshes, 5pt. template 
- 

Mesh n m total commun. commun. seq 1 proc 
Size time time free time parallel 

192 192 192 295 250 32 59 1 885 
192 32 192 184 149 32 591 885 
192 32 64 105 63 41 591 885 
192 32 32 99 52 54 591 885 
576 32 64 492 216 370 5319 7965 

(ms) (ms) time(ms) (ms) time (ms) 

efficiency total time 

Table 4: Matrix from 300x300 mesh, 5pt. template reduced system 

phases 

0.16 
0.31 
0.53 
0.44 
0.33 

3.99 598 
2.07 299 
1.21 149 
1.44 99 
1.95 75 

communication :n 
3.45 
1.57 
0.88 
0.65 
0.45 

types of problems. The matrix for this problem is obtained in a rather involved manner 
discussed more fully in [6]. We begin with a matrix obtained from a 300 by 300 point 
mesh using a five point template. A reduced s y s t e m  is obtained from this matrix by 
modifying the matrix in a way that increases the number of non-zeros per row and 
halves the number of rows. 

In this problem the best efficiency was to 53%. The ability to aggregate work and 
control the number of communication startups plays a central role in obtaining increased 
efficiency. 

5 Conclusion 

There exist many types of problems (e.g. sparse system solvers) whose irregularity can 
cause problems for distributed memory machines. Good methods for parallelizing and 
partitioning these types of problems require one to assign computations and data in 
rather arbitrary ways. Efficient implementations tend to involve considerable program- 
ming effort to get good performance, making system development unnecessarily time 
consuming. 

We have described a system that efficiently solves a variety of irregular problems 
that are s t a r t - t i m e  schedulable. This system, which consists of a preprocessor and a 
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schedule executer, inputs a schedule which dictates/reflects how the input index data 
is to be partitioned. The preprocessor precomputes the information needed to be sent 
to each processor at each point in the computation and locally numbers the indices 
assigned to each processor. This precomputed information is then used in a schedule 
executer which is designed to carry out (in an optimized manner) the computation, 
communication and the partitioning of data. The structure of the schedule executer 
and preprocessor do not vary, even though the details of the computation and the type 
of information are problem dependent. 

We draw the following conclusions from this work: 

1. It is possible to design a system that uses a single infrastructure to solve a variety 
of sparse and adaptive problems. 

2. It is likely that parallelizing compilers will have to customize well tuned template 
programs rather than generate the very complex programs needed to efficiently 
partition and parallelize rather simple loops. 

3. The computational complexity of the preprocessor setup is relatively high. This 
implies that preprocessors should be used only when a loop is to be executed many 
times. 
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